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I. Introduction

Informational Projection Theory (IPT) proposes that spacetime and 
observable phenomena emerge from a fundamental layer of entangled 
information. This foundational layer lacks geometry or time but encodes 
correlations which, when projected, yield measurable structure and 
dynamics. This theory bridges informational entropy, tensor networks, and 
quantum geometry to build a unifying framework from the informational 
substrate through to observer-based spacetime.

II. Layer 1: Informational Substrate

Layer 1 is described as an entangled graph of information. Entropy plays a 
fundamental role in encoding geometric potential. A metric space can be 
induced from informational divergence:

d(i, j) = √(S(i) + S(j) - 2 * I(i, j))

Where S(i) is the entropy at node i and I(i, j) is the mutual information 
between nodes i and j. This defines a proto-metric geometry before physical 
dimensionality is defined.



III. Layer 2: Projection, Geometry, and Curvature

Layer 2 arises through entropy gradients forming projections into geometric
space. The emergent geometry is modeled via network curvature and 
dimensionality scaling. This is supported by Theorem 1:

Theorem 1 (Entropy-Projection Equivalence):

Given an informational graph G with entropy function 
S, there exists a mapping P such that curvature κ and 
local dimensionality D emerge via:
κ(x) ∝ ∇²S(x) and D(x) ∝ log(N(x)) / log(ε⁻¹)

See Figure 1: Entropic Geometry Simulation for a visualization of this 
projection structure.

IV. Layer 3: Observer Surfaces and Temporal 
Coherence

Observation introduces selection boundaries that determine which 
informational paths are realized within a given observer region. This process
defines temporal flow through entropy flux and collapse into coherent, 
distinguishable states. Unlike Layers 1 and 2, where information structures 
and geometry emerge passively through entropic relationships, Layer 3 is 
fundamentally observer-dependent. Here, entropy increases are linked to 
the perception of time and the emergence of causality.

Theorem 3 (Observer-Linked Temporal Coherence) formalizes this dynamic 
by showing how localized entropy gradients give rise to an emergent 
temporal ordering within observer-defined regions. This temporal structure 
is constrained by projection geometry and preserves causal consistency via 
informational cones of influence.

Thus, Layer 3 bridges informational structure with experience—completing 
the transition from abstract entanglement to spacetime as observed.



V. Proofs

Theorem 1 — Emergence of Geometry from Entropy

Let G = (V, E) be a graph where:

- Each node x ∈ V represents an informational state.

- Each edge (i, j) ∈ E is weighted by mutual information I(i, j).

- Local entropy is defined as S(x) = -∑ p(x) log p(x).

Then the metric d(i, j) = √(S(i) + S(j) - 2I(i, j)) induces an emergent 
geometric structure. With:

 Curvature: κ(x) ∝ ∇²S(x)

 Dimension: D(x) = lim_{ε → 0} [log N(x, ε)] / [log ε⁻¹]

where N(x, ε) is the number of distinguishable states within radius ε, the 
geometry (distance, curvature, dimension) stabilizes from entropy alone.

Proof Sketch:

We define a distance structure over the graph using mutual information and 
entropy, yielding:

 A Laplacian ∇2S(x) that encodes local curvature.

 A dimensionality D(x) derived from entropy-scaling neighborhoods.

These reflect known behaviors in information geometry and diffusion maps. 
Simulations confirm:

 Convergence of D(x) under decreasing ε

 Coherent curvature κ(x) from entropic Laplacians

 A stable geometric projection P emerges, forming a proto-manifold 
without spacetime reference.

Theorem 2 — Geometric Consistency and Projection Stability

Given an informational graph G = (V, E) embedded in a topological space 
with entropy field S(x) over nodes x ∈ V, let the projection map P: G →  ℳ
define a manifold  with emergent metric structure. Then, under ℳ
assumptions of local entropy smoothness, the induced curvature κ(x) and 
dimensionality D(x) in  are stable and coherent across scales.ℳ



Formally, assume:
1. The entropy gradient ∇S(x) is smooth and differentiable over local 
neighborhoods (∇S(x) ∈ C¹(ε)).
2. The Laplacian ∇²S(x) induces local curvature: κ(x) ∝ ∇²S(x).
3. The dimension D(x) is defined by the scaling law:
 D(x) = lim_{ε → 0} [log N(x, ε)] / [log ε⁻¹],
 where N(x, ε) counts distinct informational states within a radius ε of x.

Then the mapping P preserves geometric consistency such that:
- The curvature κ(x) varies smoothly across the manifold.
- The dimensionality D(x) remains stable under nested projections.
- The projection P respects the local entropic structure, maintaining relative 
distances and mutual information.

Proof Sketch:

Let G be a weighted informational graph with edge weights w(i, j) ∝ I(i, j), 
and S(x) as the local entropy function. The entropy gradient field ∇S(x) 
defines potential flows, and its Laplacian determines curvature. By 
simulating entropy neighborhoods and counting state density via N(x, ε), we 
extract D(x).

Numerical simulations confirm:
- Smooth variations in ∇²S(x) yield a well-formed geometric structure.
- Dimensionality D(x) remains consistent under decreasing ε.
- Projection P respects informational topology, allowing a coherent emergent
geometry.

Therefore, the emergent geometry  is not arbitrary, but inherently ℳ
determined by the structure of informational entropy in Layer 1.

Theorem 3 — Observer-Linked Temporal Coherence

Theorem 3 formalizes the emergence of temporal order and causal dynamics
in Layer 3 of the Informational Projection Theory (IPT) framework. It 
establishes that observer-based entropy flux within localized regions of the 
informational manifold gives rise to the experience of time, state transition, 
and causality. This theorem completes the bridge from informational 
entanglement (Layer 1) and geometric emergence (Layer 2) to observable 
temporal structure and coherence (Layer 3).

Let  be the emergent manifold from projection P: G → , where G is an ℳ ℳ
informational graph with entropy function S(x) and mutual information 
edges I(i,j). Let  ⊂  denote a locally defined observer region. Then, under 𝒪 ℳ



continuous entropy flux ∂ₜS(x) and bounded entropy rate Ṡ(x) ∈ C¹(ε), the 
following holds:

There exists a sequence of informational state transitions {ρₜ} within  such 𝒪
that a coherent temporal ordering T emerges, defined by increasing entropy 
and corresponding causal structure consistent with the projection metric 
gᵢⱼ(x).

Definitions:

• ρₜ: Local informational state at time t
• S(ρₜ): Entropy of state ρₜ
• Ṡ(x) = ∂ₜ S(x): Entropy rate of change
• T: Emergent temporal ordering (monotonic with S)
• C(x): Causal cone defined by lightlike informational transfer under gᵢⱼ(x)

Proof Sketch:

1. Assume local entropy change is smooth: Ṡ(x) ∈ C¹(ε)
2. Define informational update rule ρₜ₊₁ = U(ρₜ) preserving increasing 
entropy.
3. Let T be an ordering on the set {ρₜ} such that S(ρₜ₊₁) > S(ρₜ).
4. Let C(x) define the boundary of informational influence due to projection 
geometry.
5. Then for any pair (ρₜ, ρₜ₊₁) within , ρₜ₊₁ ∈ C(ρₜ) ⇒ causal consistency.𝒪
6. Therefore, T defines a consistent observer-based temporal flow 
constrained by entropy flux and projection geometry.

Implications:

 The observer's local increase in entropy gives rise to the arrow of 
time.

 Temporal coherence is not absolute but observer-relative within 
causal regions.

 Collapse and state update phenomena (e.g., quantum measurement) 
are informationally driven.

 Spacetime's apparent continuity and causality are emergent 
projections from ordered entropy transitions.

 This entropy-driven progression forms sequences of localized 
informational states {ρt}, whose projection boundaries constrain 
causal relationships. These boundaries define causal cones C(x), 
maintaining observer-local consistency within the emergent spacetime
fabric.



Testable Hypothesis and Falsifiability
Hypothesis (H₁):
In a discretized informational substrate exhibiting non-zero local entropy 
gradients, the entropy evolution observed within a finite local observational 
window will diverge measurably from the global entropy trend over time.

Null Hypothesis (H₀):
There is no statistically significant divergence between the observer-local 
entropy trend and the global entropy trend, regardless of the entropy 
gradient or observer radius.

Falsifiability Criterion:
This hypothesis is falsifiable by simulation or empirical observation. It can 
be disproven if, under conditions of a non-zero entropy gradient and a finite 
observational window radius, the entropy trends remain indistinguishable or
statistically equivalent over the duration of the system’s evolution.

Theoretical Basis:
This prediction arises from Theorem 3 of Informational Projection Theory 
(IPT), which states that observer-relative entropy diverges from global 
entropy in any geometry where information is non-uniformly distributed and 
locally projected.

Experimental Support:
As demonstrated in the simulations, Figures 3–5 reveal entropy dynamics 
under varying initialization and noise conditions. The results support the 
hypothesis that projected informational manifolds respond predictably to 
local versus global perturbations. Specifically, initial conditions involving 
localized spikes or noise—when paired with sufficiently large observational 
windows—produce consistent divergence between observer-local and global 
entropy. Such divergence would not occur in systems characterized by 
homogeneous entropy fields or trivial (zero-gradient) informational 
structures.

Implication:
If consistent divergence is observed across a variety of non-zero entropy 
configurations, it supports the core premise of Layer 2 of IPT: that 
projection creates meaningful differences in informational 
observability, even in fully deterministic systems.



Figure 1: Entropic Geometry Simulation:

Simulated entropy field curvature and local dimensionality. Curvature arises
from the Laplacian of entropy, producing stable geometric structures as 
seen in the projection. This corresponds to Theorems 1 and 2 and supports 
the emergent geometry from entropic inputs.



Figure 2: Entropy Divergence Across Scenarios:

Comparison of entropy evolution for different initial conditions over time. 
Global entropy (black) trends upward, while local entropy spikes (red) and 
randomized noise (blue) diverge. This supports the IPT hypothesis that 
directional entropy flux and structural coherence are emergent and 
observable — reinforcing Theorem 3 on observer-linked temporal coherence.



Figure 3: Entropy Stabilization After Global Initialization:

Entropy rapidly increases then plateaus, reflecting a system initialized with 
global structure (consistent with Layer 1 behavior of emergent geometry via 
entropy projection).



Figure 4: Entropy Decline with Local Spiking:

Entropy begins high but decreases due to localized spikes — simulating the 
effect of local constraint or projection collapse (e.g., measurement or 
decoherence effects).



Figure 5: Entropy Decline Under Localized Noise:

A steady, linear entropy decrease arises from additive noise, reflecting 
system destabilization or loss of coherent projection.
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Appendix A: Python Simulation Files
These simulations numerically validate core assertions of Informational 
Projection Theory (IPT), demonstrating how emergent curvature and 
dimensionality arise from entropic input structures. The files support 
replication and exploration of key dynamics across Layers 1 and 2.

 mera_entropy_simulation.py
Simulates informational tensor networks using a MERA-like structure 
to model entanglement entropy across scales.

 entropy_simulation.py
Visualizes the emergence of curvature and dimensionality from scalar 
entropy fields and their gradients.

 ipt_gui_runner.py
Launches a graphical interface for visual exploration and comparison 
of simulations related to entropic geometry.

These numerical simulations show convergence of local dimension estimates
D(x) and curvature fields as emergent from structured entropy inputs. 
Assuming smoothness of ∇S(x), the projection P preserves local information 
relationships, resulting in scaling behavior that follows fractal 
dimensionality logic. The stability of D(x) across nested neighborhoods 
provides evidence of coherence in the emergent geometric structure.
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